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An SIRS epidemic model incorporating media coverage with time delay is proposed. The positivity and boundedness are studied
firstly.The locally asymptotical stability of the disease-free equilibrium and endemic equilibrium is studied in succession. And then,
the conditions on which periodic orbits bifurcate are given. Furthermore, we show that the local Hopf bifurcation implies the global
Hopf bifurcation after the second critical value of the delay. The obtained results show that the time delay in media coverage can
not affect the stability of the disease-free equilibrium when the basic reproduction number 𝑅

0
< 1. However, when 𝑅

0
> 1, the

stability of the endemic equilibrium will be affected by the time delay; there will be a family of periodic orbits bifurcating from the
endemic equilibrium when the time delay increases through a critical value. Finally, some examples for numerical simulations are
also included.

1. Introduction

Since Kermack and Mckendrick proposed the classical SIR
epidemic model in 1927, mathematical modeling has become
important tools in analyzing the spread and control of infec-
tious diseases. Attempts have been made to develop realistic
mathematical models for the transmission dynamics of infec-
tious diseases. In recent years, epidemic models described by
ordinary differential equations have been studied by many
authors (see, e.g., [1–9] and the references cited therein).

One of themost fundamental compartmentmodels based
on differential equations is the SIRS model described by
(1) below [10–15]. Let 𝑆(𝑡) be the number of susceptible
individuals, 𝐼(𝑡) the number of infective individuals, and𝑅(𝑡)
the number of removed individuals at time 𝑡, respectively. A
general SIRS epidemic model can be formulated as

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝑑𝑆 − 𝑔 (𝐼) 𝑆 + 𝛾𝑅,

𝑑𝐼

𝑑𝑡
= 𝑔 (𝐼) 𝑆 − (𝑑 + 𝜇 + 𝛿) 𝐼,

𝑑𝑅

𝑑𝑡
= 𝜇𝐼 − (𝑑 + 𝛾) 𝑅,

(1)

where 𝑏 > 0 is the recruitment rate of the population, 𝑑 > 0 is
the natural death rate of the population, 𝜇 > 0 is the natural
recovery rate of the infective individuals, 𝛾 > 0 is the rate at
which recovered individuals lose immunity and return to the
susceptible class, and 𝛿 > 0 is the disease-induced death rate.
The transmission of the infection is governed by the incidence
rate 𝑔(𝐼)𝑆, and 𝑔(𝐼) is called the infection force.

In modelling of communicable diseases, the incidence
rate 𝑔(𝐼)𝑆 may be affected by some factors, such as media
coverage, density of population, and life style [16–22]. It is
worthy to note thatmedia coverage plays an important role in
helping both the government authoritymake interventions to
contain the disease and people respond to the disease [16, 19].
And a number ofmathematicalmodels have been formulated
to describe the impact of media coverage on the transmission
dynamics of infectious diseases. In particular, Cui et al. [16],
Tchuenche et al. [18], and Sun et al. [20] incorporated a
nonlinear function of the number of infective individuals (2)
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in their transmission term to investigate the effects of media
coverage on the transmission dynamics:

𝑔 (𝐼) = 𝛽
1
−

𝛽
2
𝐼

𝑚 + 𝐼
, (2)

where 𝛽
1
> 0 is the maximal effective contact rate between

the susceptible and infective individuals and 𝛽
2

> 0 is
the maximal reduced effective contact rate due to mass
media alert in the presence of infective individuals; the terms
𝛽
2
𝐼/(𝑚 + 𝐼) measure the effect of reduction of the contact

rate when infectious individuals are reported in the media.
Because the coverage report cannot prevent disease from
spreading completely we have 𝛽

1
⩾ 𝛽

2
> 0. The half-

saturation constant 𝑚 > 0 reflects the impact of media
coverage on the contact transmission.The function 𝐼/(𝑚+ 𝐼)

is a continuous bounded function which takes into account
disease saturation or psychological effects [20–22]. Then
model (1) becomes

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝑑𝑆 − (𝛽

1
−

𝛽
2
𝐼

𝑚 + 𝐼
) 𝑆𝐼 + 𝛾𝑅,

𝑑𝐼

𝑑𝑡
= (𝛽

1
−

𝛽
2
𝐼

𝑚 + 𝐼
) 𝑆𝐼 − (𝑑 + 𝜇 + 𝛿) 𝐼,

𝑑𝑅

𝑑𝑡
= 𝜇𝐼 − (𝑑 + 𝛾) 𝑅.

(3)

On the other hand, delays are ubiquitous in life, so it is
in media coverage. Media coverage of an infectious outbreak
can be seen as following two major routes [20, 23]. The first
route is when the media report directly to the public on facts
that they (the media) observe; the second has public health
authorities using mass media or the Internet to communicate
about the outbreak. For the second route, the number of
infections and the number of suspected infections reported
by media today are often the statistical result of yesterday
or the day before. So the effects of media coverage on the
transmission dynamics can be modified as follows:

𝑔 (𝐼 (𝑡 − 𝜏)) = 𝛽
1
−

𝛽
2
𝐼 (𝑡 − 𝜏)

𝑚 + 𝐼 (𝑡 − 𝜏)
, (4)

where 𝜏 > 0 is a time delay representing the latent period of
media coverage. Then model (3) can be modified as

𝑑𝑆 (𝑡)

𝑑𝑡
=𝑏 − 𝑑𝑆 (𝑡) − (𝛽

1
−

𝛽
2
𝐼 (𝑡 − 𝜏)

𝑚 + 𝐼 (𝑡 − 𝜏)
) 𝑆 (𝑡) 𝐼 (𝑡) + 𝛾𝑅 (𝑡),

𝑑𝐼 (𝑡)

𝑑𝑡
= (𝛽

1
−

𝛽
2
𝐼 (𝑡 − 𝜏)

𝑚 + 𝐼 (𝑡 − 𝜏)
) 𝑆 (𝑡) 𝐼 (𝑡) − (𝑑 + 𝜇 + 𝛿) 𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝜇𝐼 (𝑡) − (𝑑 + 𝛾) 𝑅 (𝑡) .

(5)

In the following, we will investigate the effect of time delay
on the dynamics of system (5). We suppose that the initial
condition for system (5) takes the form

𝑆 (𝜃) = 𝜙1
(𝜃) , 𝐼 (𝜃) = 𝜙

2
(𝜃) , 𝑅 (𝜃) = 𝜙

3
(𝜃) ,

𝜙
𝑖 (𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0] , 𝜙

𝑖 (0) > 0,

𝑖 = 1, 2, 3,

(6)

where (𝜙
1
(𝜃), 𝜙

2
(𝜃), 𝜙

3
(𝜃)) ∈ C([−𝜏, 0],R3

+0
), which is the

Banach space of continuous functions mapping the interval
[−𝜏, 0] into R3

+0
, where R3

+0
= {(𝑥, 𝑦, 𝑧) | 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0}.

By the fundamental theory of functional differen-
tial equations [24], system (5) has a unique solution
(𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) satisfying the initial condition (6).

The rest of the paper is organized as follows. In Section 2,
we show the positivity and the boundedness of solutions of
system (5) with initial condition (6). In Section 3, we study
the local stability of the equilibria and the existence of the
Hopf bifurcation at the positive equilibrium. In Section 4,
we consider the global existence of bifurcating periodic solu-
tions. In Section 5, we will give some numerical simulations
to support the theoretical prediction. In Section 6, a brief
discussion is given.

2. Positivity and Boundedness

In this section, we study the positivity and boundedness of
solutions of system (5) with initial condition (6).

Theorem 1. Solutions of system (5) with initial condition (6)
are positive for all 𝑡 ⩾ 0.

Proof. Assume (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) is a solution of system (5)with
initial condition (6). Let us consider 𝐼(𝑡) for 𝑡 ⩾ 0. It follows
from the second equation of system (5) that

𝐼 (𝑡) = 𝐼 (0) 𝑒
∫
𝑡

0
((𝛽
1
−((𝛽
2
𝐼(𝑠−𝜏))/(𝑚+𝐼(𝑠−𝜏))))𝑆(𝑠)−(𝑑+𝜇+𝛿))𝑑𝑠

. (7)

From the initial condition (6), we have 𝐼(𝑡) > 0, for 𝑡 ⩾ 0.
Then, from the third equation of system (5), we have

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝜇𝐼 (𝑡) − (𝑑 + 𝛾) 𝑅 (𝑡) > − (𝑑 + 𝛾) 𝑅 (𝑡) . (8)

A comparison argument shows that

𝑅 (𝑡) ⩾ 𝑅 (0) 𝑒
∫
𝑡

0
(−(𝑑+𝛾))𝑑𝑠

. (9)

From the initial condition (6), we have 𝑅(𝑡) > 0, for 𝑡 ⩾ 0.
Next, we prove that 𝑆(𝑡) is positive. Assume the contrary;

then, let 𝑡
1
be the first time such that 𝑆(𝑡

1
) = 0. By the first

equation of (5) we have
𝑑𝑆(𝑡)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑡
1

= 𝑏 + 𝛾𝑅 (𝑡
1
) > 0. (10)

Thismeans 𝑆(𝑡) < 0 for 𝑡 ∈ (𝑡
1
−𝜀, 𝑡

1
), where 𝜀 is an arbitrarily

small positive constant. This leads to a contradiction. It
follows that 𝑆(𝑡) is always positive for 𝑡 ⩾ 0. This ends the
proof.
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Theorem 2. Solutions of system (5) with initial condition (6)
are ultimately bounded.

Proof. From Theorem 1, solutions of system (5) with initial
condition (6) are positive for all 𝑡 ⩾ 0. Let𝑁(𝑡) = 𝑆(𝑡)+𝐼(𝑡)+
𝑅(𝑡). From (5), we have

𝑑𝑁 (𝑡)

𝑑𝑡
= 𝑏 − 𝑑𝑁 (𝑡) − 𝛿𝐼 (𝑡) < 𝑏 − 𝑑𝑁 (𝑡) . (11)

Therefore, 𝑁(𝑡) < (𝑏/𝑑) + 𝜀 for all large 𝑡, where 𝜀 is an
arbitrarily small positive constant. Thus, 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡)
are ultimately bounded.

3. Local Stability and Hopf
Bifurcation Analysis

3.1. Previous Results. Wenow state some key results from [17],
which provide the context for the main results of this paper.
The basic reproduction number [17, 21] for the model is

𝑅
0
=

𝑏𝛽
1

𝑑 (𝑑 + 𝜇 + 𝛿)
. (12)

From [21], when 𝜏 = 0, system (5) has a disease-free
equilibrium 𝐸

0
= (𝑏/𝑑, 0, 0), which exists for all parameter

values. When 𝑅
0
> 1, system (5) has a unique endemic

equilibrium 𝐸
∗
= (𝑆

∗
, 𝐼

∗
, 𝑅

∗
), where

𝑆
∗
=
(𝑑 + 𝜇 + 𝛾) (𝑚 + 𝐼

∗
)

𝛽
1 (𝑚 + 𝐼∗) − 𝛽2

𝐼∗
,

𝑅
∗
=

𝜇𝐼
∗

𝑑 + 𝛾
,

𝐻
1
𝐼
∗2
+ 𝐻

2
𝐼
∗
+ 𝐻

3
= 0,

𝐻
1
= −

1

𝑑 + 𝛾
(𝛽

1
− 𝛽

2
) [𝛾 (𝑑 + 𝛿) + 𝑑 (𝑑 + 𝜇 + 𝛿)] ,

𝐻
2
= −

𝑑𝛽
1
𝑚𝜇

𝑑 + 𝛾
− 𝛽

1
𝑚(𝑑 + 𝛿) − 𝑏𝛽

2
+ 𝑏𝛽

1
(1 −

1

𝑅
0

) ,

𝐻
3
= 𝑑𝑚 (𝑑 + 𝜇 + 𝛿) (𝑅

0
− 1) .

(13)

Denoting Γ = {(𝑆, 𝐼, 𝑅) ∈ R3

+
| 0 < 𝑆 + 𝐼 + 𝑅 ⩽ 𝑏/𝑑}, the

following results in [17, 21] are here just recalled.

Lemma 3. For 𝜏 = 0, we have the following.

(i) The disease-free equilibrium 𝐸
0
is globally asymptoti-

cally stable if 𝑅
0
< 1 and unstable if 𝑅

0
> 1 in the set

Γ.

(ii) The endemic equilibrium 𝐸
∗ is globally asymptotically

stable if 𝑅
0
> 1 in the set Γ.

3.2. Local Stability at 𝐸
0
. The characteristic equation of

system (5) at 𝐸
0
is

det
[
[
[
[

[

𝜆 + 𝑑
𝛽
1
𝑏

𝑑
−𝛾

0 𝜆 + (𝑑 + 𝜇 + 𝛿 −
𝛽
1
𝑏

𝑑
) 0

0 −𝜇 𝜆 + (𝑑 + 𝛾)

]
]
]
]

]

= 0,

(14)

which is equivalent to

(𝜆 + 𝑑) (𝜆 + 𝑑 + 𝛾) (𝜆 + 𝑑 + 𝜇 + 𝛿 −
𝛽
1
𝑏

𝑑
) = 0. (15)

It is easy to see that, when 𝑅
0
< 1, (15) has three negative

roots and that, when 𝑅
0
> 1, (15) has one positive root and

two negative roots. Thus, we have the following.

Theorem 4. For any time delay 𝜏 ⩾ 0, we have the following:

(i) the disease-free equilibrium 𝐸
0
is locally asymptotically

stable if 𝑅
0
< 1.

(ii) the disease-free equilibrium 𝐸
0
is unstable if 𝑅

0
> 1.

3.3. Local Stability and Hopf Bifurcation at 𝐸∗. In this
subsection, we suppose that 𝑅

0
> 1. In what follows, using

time delay as the bifurcation parameter, we investigate the
Hopf bifurcation for system (5) and the stability of𝐸∗ byusing
the method in [25, 26].

The characteristic equation of system (5) at 𝐸∗ is

det[

[

𝜆 − 𝑎
1

−𝑎
2
− 𝑎

6
𝑒
−𝜆𝜏

−𝛾

−𝑎
3

𝜆 − 𝑎
4
+ 𝑎

6
𝑒
−𝜆𝜏

0

0 −𝜇 𝜆 − 𝑎
5

]

]

= 0, (16)

where 𝑎
1
= −𝑑 − 𝛽

1
𝐼
∗
+ (𝛽

2
𝐼
∗2
/(𝑚 + 𝐼

∗
)), 𝑎

2
= −𝛽

1
𝑆
∗
+

(𝛽
2
𝑆
∗
𝐼
∗
/(𝑚 + 𝐼

∗
)), 𝑎

3
= 𝛽

1
𝐼
∗
− (𝛽

2
𝐼
∗2
/(𝑚 + 𝐼

∗
)), 𝑎

4
= −(𝑑 +

𝜇 + 𝛽) + 𝛽
1
𝑆
∗
− (𝛽

2
𝑆
∗
𝐼
∗
/(𝑚 + 𝐼

∗
)), 𝑎

5
= −(𝑑 + 𝛾), and 𝑎

6
=

(𝑚𝛽
2
𝑆
∗
𝐼
∗
/(𝑚 + 𝐼

∗
)
2
). Equation (16) is equivalent to

𝜆
3
+ 𝑏

1
𝜆
2
+ 𝑏

2
𝜆 + 𝑏

3
+ (𝑏

4
𝜆
2
+ 𝑏

5
𝜆 + 𝑏

6
) 𝑒

−𝜆𝜏
= 0, (17)

where 𝑏
1
= −(𝑎

1
+ 𝑎

4
+ 𝑎

5
), 𝑏

2
= 𝑎

1
𝑎
4
+ 𝑎

1
𝑎
5
+ 𝑎

4
𝑎
5
− 𝑎

2
𝑎
3
,

𝑏
3
= −𝑎

1
𝑎
4
𝑎
5
+ 𝑎

2
𝑎
3
𝑎
5
− 𝑎

3
𝛾𝜇, 𝑏

4
= 𝑎

6
, 𝑏

5
= −𝑎

6
(𝑎

1
+ 𝑎

3
+ 𝑎

5
),

and 𝑏
6
= 𝑎

5
𝑎
6
(𝑎

1
+ 𝑎

3
).

Obviously, 𝑖𝜔 is a root of (17) if and only if 𝜔 satisfies

− 𝜔
3
𝑖 − 𝑏

1
𝜔

2
+ 𝑏

2
𝜔𝑖 + 𝑏

3

+ (−𝑏
4
𝜔

2
+ 𝑏

5
𝜔𝑖 + 𝑏

6
) (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0.

(18)

Separating the real and imaginary parts, we have

𝑏
1
𝜔

2
− 𝑏

3
= (𝑏

6
− 𝑏

4
𝜔

2
) cos𝜔𝜏 + 𝑏

5
𝜔 sin𝜔𝜏,

−𝜔
3
+ 𝑏

2
𝜔 = (𝑏

6
− 𝑏

4
𝜔

2
) sin𝜔𝜏 − 𝑏

5
𝜔 cos𝜔𝜏,

(19)
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which is equivalent to

𝜔
6
+ (𝑏

2

1
− 𝑏

2

4
− 2𝑏

2
) 𝜔

4

+ (𝑏
2

2
− 2𝑏

1
𝑏
3
− 𝑏

2

5
+ 2𝑏

4
𝑏
6
) 𝜔

2
+ 𝑏

2

3
− 𝑏

2

6
= 0.

(20)

Let 𝑧 = 𝜔2 and denote 𝑝 = 𝑏2
1
− 𝑏

2

4
− 2𝑏

2
, 𝑞 = 𝑏2

2
− 2𝑏

1
𝑏
3
− 𝑏

2

5
+

2𝑏
4
𝑏
6
, and 𝑟 = 𝑏2

3
− 𝑏

2

6
. Then (20) becomes

𝑧
3
+ 𝑝𝑧

2
+ 𝑞𝑧 + 𝑟 = 0. (21)

Next, we need to seek the conditions under which (21) has at
least one positive root. Denote

ℎ (𝑧) = 𝑧
3
+ 𝑝𝑧

2
+ 𝑞𝑧 + 𝑟. (22)

Since lim
𝑧→+∞

ℎ(𝑧) = +∞, we conclude that if 𝑟 < 0, then
(21) has at least one positive root.

From (22), we have

ℎ
󸀠
(𝑧) = 3𝑧

2
+ 2𝑝𝑧 + 𝑞. (23)

Clearly, ifΔ = 𝑝2
−3𝑞 ⩽ 0, then the function ℎ(𝑧) ismonotone

increasing in 𝑧 ∈ [0, +∞). Thus, when 𝑟 ⩾ 0 and Δ ⩽ 0, (21)
has no positive real root. On the other hand, when 𝑟 ⩾ 0 and
Δ > 0, the following equation

3𝑧
2
+ 2𝑝𝑧 + 𝑞 = 0 (24)

has two real roots

𝑧
∗

1
=
−𝑝 + √Δ

3
, 𝑧

∗

2
=
−𝑝 − √Δ

3
. (25)

It is easy to see that ℎ󸀠󸀠(𝑧∗
1
) = 2√Δ > 0 and ℎ

󸀠󸀠
(𝑧

∗

2
) =

−2√Δ < 0. It follows that 𝑧∗
1
and 𝑧∗

2
are the local minimum

and the local maximum of ℎ(𝑧), respectively. Hence, we have
the following simple property.

Lemma 5. Suppose that 𝑟 ⩾ 0 and Δ > 0. Then (21) has
positive root if and only if 𝑧∗

1
> 0 and ℎ(𝑧∗

1
) ⩽ 0.

From Lemma 5 and the discussion above, we have the
following.

Lemma 6. For the polynomial equation (21), we have the
following results.

(i) If 𝑟 < 0, then (21) has at least one positive root.
(ii) If 𝑟 ⩾ 0 and Δ = 𝑝2

− 3𝑞 ⩽ 0, then (21) has no positive
root.

(iii) If 𝑟 ⩾ 0 andΔ = 𝑝2
−3𝑞 > 0, then (21) has positive roots

if and only if 𝑧∗
1
= ((−𝑝 + √Δ)/3) > 0 and ℎ(𝑧∗

1
) ⩽ 0.

Suppose that (21) has positive root. Without loss of
generality, we assume that it has three positive roots, defined
by 𝑧

1
, 𝑧

2
, and 𝑧

3
, respectively. Then (20) has three positive

roots

𝜔
1
= √𝑧1, 𝜔

2
= √𝑧2, 𝜔

3
= √𝑧3. (26)

From (19), we have

cos𝜔𝜏 =
𝑏
5
𝜔

2
(𝜔

2
− 𝑏

2
) − (𝑏

1
𝜔

2
− 𝑏

3
) (𝑏

4
𝜔

2
− 𝑏

6
)

(𝑏
4
𝜔2 − 𝑏

6
)
2
+ 𝑏

2

1
𝜔2

. (27)

Thus, if we denote

𝜏
(𝑗)

𝑘

=
1

𝜔
𝑘

{cos−1(
𝑏
5
𝜔

2

𝑘
(𝜔

2

𝑘
− 𝑏

2
) − (𝑏

1
𝜔

2

𝑘
− 𝑏

3
) (𝑏

4
𝜔

2

𝑘
− 𝑏

6
)

(𝑏
4
𝜔

2

𝑘
− 𝑏

6
)
2
+ 𝑏

2

1
𝜔

2

𝑘

)

+ 2𝑗𝜋} ,

(28)

where 𝑘 = 1, 2, 3 and 𝑗 = 0, 1, 2, . . ., then ±𝑖𝜔
𝑘
is a pair of

purely imaginary roots of (17) with 𝜏 = 𝜏(𝑗)
𝑘
. Define

𝜏
0
= 𝜏

(0)

𝑘
0

= min
𝑘∈{1,2,3}

{𝜏
(0)

𝑘
} , 𝜔

0
= 𝜔

𝑘
0

. (29)

Note that, from Lemma 3, when 𝜏 = 0, the endemic
equilibrium 𝐸

∗ is stable if 𝑅
0
> 1. Till now, we can employ a

result from Ruan andWei [25] to analyze (17), which is stated
as follows.

Lemma 7. Consider the exponential polynomial

𝑃 (𝜆, 𝑒
−𝜆𝜏
1 , . . . , 𝑒

−𝜆𝜏
𝑚)

= 𝜆
𝑛
+ 𝑝

(0)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(0)

𝑛−1
𝜆 + 𝑝

(0)

𝑛

+ (𝑝
(1)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(1)

𝑛−1
𝜆 + 𝑝

(1)

𝑛
) 𝑒

−𝜆𝜏
1

+ ⋅ ⋅ ⋅ + (𝑝
(𝑚)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(𝑚)

𝑛−1
𝜆 + 𝑝

(𝑚)

𝑛
) 𝑒

−𝜆𝜏
𝑚 ,

(30)

where 𝜏
𝑖
⩾ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝(𝑖)

𝑗
(𝑖 = 0, 1, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑛) are constants. As (𝜏
1
, 𝜏

2
, . . . , 𝜏

𝑚
) vary, the sum of

the order of the zeros of𝑃 (𝜆, 𝑒
−𝜆𝜏
1 , . . . , 𝑒

−𝜆𝜏
𝑚) on the open right

half plane can change only if a zero appears on or crosses the
imaginary axis.

Applying Lemmas 6 and 7 and the discussion above, we
obtain the following lemma.

Lemma 8. For the third degree transcendental equation (17),
we have the following:

(i) if 𝑟 ⩾ 0 and Δ = 𝑝2
−3𝑞 ⩽ 0, then all roots of (17) have

negative real parts for all 𝜏 ⩾ 0;
(ii) if either 𝑟 < 0 or 𝑟 ⩾ 0, Δ = 𝑝

2
− 3𝑞 > 0, 𝑧∗

1
=

((−𝑝 + √Δ)/3) > 0, and ℎ(𝑧∗
1
) ⩽ 0, then all roots of

(17) have negative real parts for 𝜏 ∈ [0, 𝜏
0
).

Let

𝜆 (𝜏) = 𝛼 (𝜏) + 𝑖𝜔 (𝜏) (31)
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be the root of (17) near 𝜏 = 𝜏
(𝑗)

𝑘
satisfying 𝛼(𝜏(𝑗)

𝑘
) = 0 and

𝜔(𝜏
(𝑗)

𝑘
) = 𝜔

𝑘
. Then, from Lemma 8 in [26], we have the

following transversality condition.

Lemma 9. Suppose that 𝑧
𝑘
= 𝜔

2

𝑘
and ℎ󸀠(𝑧

𝑘
) ̸= 0, where ℎ(𝑧) is

defined by (22). Then

𝑑 (Re 𝜆 (𝜏(𝑗)
𝑘
))

𝑑𝜏
̸= 0,

(32)

and 𝑑(Re 𝜆(𝜏(𝑗)
𝑘
))/𝑑𝜏 has the same sign with ℎ󸀠(𝑧

𝑘
).

The proof of Lemma 9 is similar to that in the proof of
Lemma 8 in [26], and here we omit it.

Then, from the above discussion and Lemmas 8 and 9, we
have the following theorem.

Theorem 10. Suppose 𝑅
0
> 1 holds, and 𝜏(𝑗)

𝑘
, 𝜔

0
, and 𝜏

0
are

defined by (28) and (29), respectively. Then

(i) if 𝑟 ⩾ 0 and Δ = 𝑝2
− 3𝑞 ⩽ 0, the endemic equilibrium

𝐸
∗ of system (5) is locally asymptotically stable for all

𝜏 ⩾ 0;
(ii) if either 𝑟 < 0 or 𝑟 ⩾ 0, Δ = 𝑝

2
− 3𝑞 > 0, 𝑧∗

1
= ((−𝑝 +

√Δ)/3) > 0, and ℎ(𝑧∗
1
) ⩽ 0, the endemic equilibrium

𝐸
∗ of system (5) is locally asymptotically stable for 𝜏 ∈

[0, 𝜏
0
);

(iii) if the conditions of (ii) are satisfied and ℎ󸀠(𝑧
𝑘
) ̸= 0, then

system (5) exhibits Hopf bifurcation at the endemic
equilibrium 𝐸

∗ when 𝜏 pass through 𝜏 = 𝜏(𝑗)
𝑘
.

4. Global Continuation of
Local Hopf Bifurcations

In this section, we study the global continuation of periodic
solutions bifurcating from the positive equilibrium 𝐸

∗ of
system (5).

Throughout this section, we follow closely the notations
in [27]. For simplification of notations, setting 𝑧(𝑡) = (𝑧

1
(𝑡),

𝑧
2
(𝑡), 𝑧

3
(𝑡))

𝑇
= (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡))

𝑇, we may rewrite system (5)
as the following functional differential equation:

𝑧̇ (𝑡) = F (𝑧
𝑡
, 𝜏, 𝑝) , (33)

where 𝑧
𝑡
(𝜃) = (𝑧

1𝑡
(𝜃), 𝑧

2𝑡
(𝜃), 𝑧

3𝑡
(𝜃))

𝑇 = (𝑧
1
(𝑡 + 𝜃), 𝑧

2
(𝑡 +

𝜃), 𝑧
3
(𝑡 + 𝜃))

𝑇
∈ C([−𝜏, 0],R3

). It is obvious that if
𝑅

0
> 1 holds, then system (5) has a semitrivial equilibrium

𝐸
0
(𝑏/𝑑, 0, 0) and a positive equilibrium 𝐸

∗
(𝑆

∗
, 𝐼

∗
, 𝑅

∗
). Fol-

lowing the work of [27], we need to define

X = C ([−𝜏, 0] ,R2
) ,

Γ = Cl {(𝑧, 𝜏, 𝑝) ∈ X × R × R+
;

𝑧 is a nonconstant periodic solution of (33)} ,

N = {(𝑧, 𝜏, 𝑝) ;F (𝑧, 𝜏, 𝑝) = 0} .

(34)

Let ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
denote the connected component passing

through (𝐸∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
) in Γ, where 𝜏

𝑗
and 𝜔

0
are defined by

(28) and (29). FromTheorem 10, we know that ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
is

nonempty.
We first state the global Hopf bifurcation theory due to

Wu [27] for functional differential equations.

Lemma 11. Assume that (𝑧
∗
, 𝜏, 𝑝) is an isolated center satis-

fying the hypotheses (𝐴
1
)–(𝐴

4
) in [27]. Denote by ℓ

(𝑧
∗
,𝜏,𝑝)

the
connected component of (𝑧

∗
, 𝜏, 𝑝) in Γ. Then either

(i) ℓ
(𝑧
∗
,𝜏,𝑝)

is unbounded, or
(ii) ℓ

(𝑧
∗
,𝜏,𝑝)

is bounded, ℓ
(𝑧
∗
,𝜏,𝑝)

∩ Γ is finite, and

∑

(𝑧,𝜏,𝑝)∈ℓ
(𝑧∗,𝜏,𝑝)

∩N

𝛾
𝑚
(𝑧

∗
, 𝜏, 𝑝) = 0, (35)

for all 𝑚 = 1, 2, . . ., where 𝛾
𝑚
(𝑧

∗
, 𝜏, 𝑝) is the 𝑚th crossing

number of (𝑧
∗
, 𝜏, 𝑝) if𝑚 ∈ 𝐽(𝑧

∗
, 𝜏, 𝑝), or it is zero if otherwise.

Clearly, if (ii) in Lemma 11 is not true, then ℓ
(𝑧
∗
,𝜏,𝑝)

is
unbounded. Thus, if the projections of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝑧-space
and onto 𝑝-space are bounded, then the projection onto
𝜏-space is unbounded. Further, if we can show that the
projection of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝜏-space is away from zero, then
the projection of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝜏-space must include interval
[𝜏, +∞). Following this ideal, we can prove our results on the
global continuation of local Hopf bifurcation.

FromTheorems 1 and 2, it is easy to have the following.

Lemma 12. If the condition𝑅
0
> 1 holds, then all nonconstant

periodic solutions of (5)with initial condition (6) are uniformly
bounded.

From [21], we know the following lemma.

Lemma 13. If the condition 𝑅
0
> 1 holds, then when 𝜏 = 0,

the positive equilibrium 𝐸
∗ is globally stable in R3

+
.

Lemma 14. If 𝑅
0
> 1, then system (5) has no nonconstant

periodic solution with period 𝜏.

Proof. Suppose for a contradiction that system (5) has non-
constant periodic solution with period 𝜏. Then the following
system of ordinary differential equations has nonconstant
periodic solution:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑏 − 𝑑𝑆 (𝑡) − (𝛽

1
−

𝛽
2
𝐼 (𝑡)

𝑚 + 𝐼 (𝑡)
) 𝑆 (𝑡) 𝐼 (𝑡) + 𝛾𝑅 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= (𝛽

1
−

𝛽
2
𝐼 (𝑡)

𝑚 + 𝐼 (𝑡)
) 𝑆 (𝑡) 𝐼 (𝑡) − (𝑑 + 𝜇 + 𝛿) 𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝜇𝐼 (𝑡) − (𝑑 + 𝛾) 𝑅 (𝑡) .

(36)

System (36) has the same equilibria as system (5), that is,
𝐸

0
(Λ/𝑑, 0, 0) and a positive equilibrium 𝐸

∗
(𝑆

∗
, 𝐼

∗
, 𝑅

∗
). Note

that 𝐼-axis and 𝑅-axis are the invariable manifold of system
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(36) and the orbits of system (36) do not intersect each other.
Thus, there is no solution that crosses the coordinate axis. On
the other hand, note the fact that if system (36) has a periodic
solution, then theremust be the equilibrium in its interior and
𝐸

0
are located on the coordinate axis. Thus, we conclude that

the periodic orbit of system (36)must lie in the first quadrant.
From Lemma 13, the positive equilibrium is asymptotically
stable and globally stable inR3

+
; thus, there is no periodic orbit

in the first quadrant. This ends the proof.

Theorem 15. Let 𝜔
0
and 𝜏

𝑗
(𝑗 = 0, 1, . . .) be defined in (28)

and (29). If 𝑅
0
> 1, then system (5) has at least 𝑗 − 1 periodic

solutions for every 𝜏 > 𝜏
𝑗
(𝑗 = 1, 2, . . .).

Proof. It is sufficient to prove that the projection of
ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
onto 𝜏-space is [𝜏, +∞) for each 𝑗 > 0, where

𝜏 ≤ 𝜏
𝑗
.

The characteristic matrix of (33) at an equilibrium 𝑧 =

(𝑧
(1)
, 𝑧

(2)
, 𝑧

(3)
) ∈ R3 takes the following form:

Δ (𝑧, 𝜏, 𝑝) (𝜆) = 𝜆𝐼𝑑 − 𝐷F (𝑧, 𝜏, 𝑝) (𝑒
𝜆
𝐼𝑑) , (37)

where (𝑧, 𝜏, 𝑝) is called a center if F(𝑧, 𝜏, 𝑝) = 0 and
det(Δ(𝑧, 𝜏, 𝑝)((2𝜋/𝑝)𝑖)) = 0. A center is said to be isolated
if it is the only center in some neighborhood of (𝑧, 𝜏, 𝑝). It
follows from (37) that

det (Δ (𝐸
0
, 𝜏, 𝑝) (𝜆))

= (𝜆 + 𝑑) (𝜆 + 𝑑 + 𝛾) (𝜆 + 𝑑 + 𝜇 + 𝛿 −
𝛽
1
𝑏

𝑑
) = 0,

det (Δ (𝐸∗
, 𝜏, 𝑝) (𝜆))

= 𝜆
3
+ 𝑏

1
𝜆
2
+ 𝑏

2
𝜆 + 𝑏

3
+ (𝑏

4
𝜆
2
+ 𝑏

5
𝜆 + 𝑏

6
) 𝑒

−𝜆𝜏
= 0,

(38)

where 𝑏
1
, 𝑏

2
, 𝑏

3
, 𝑏

4
, 𝑏

5
, and 𝑏

6
are defined as in Section 3.

From the discussion in Section 3, each of (38) has no purely
imaginary root provided that 𝑅

0
< 1. Thus, we conclude that

(33) has no center of the form as (𝐸
0
, 𝜏, 𝑝) and (𝐸∗

, 𝜏, 𝑝). On
the other hand, from the discussion in Section 3 about the
local Hopf bifurcation, it is easy to verify that (𝐸∗

, 𝜏
𝑗
, 2𝜋/𝜔

0
)

is an isolated center, and there exist 𝜖 > 0, 𝛿 > 0, and a smooth
curve 𝜆 : (𝜏

𝑗
− 𝛿, 𝜏

𝑗
+ 𝛿) → C such that det(Δ(𝜆(𝜏))) = 0,

|𝜆(𝜏) − 𝜔
0
| < 𝜖 for all 𝜏 ∈ [𝜏

𝑗
− 𝛿, 𝜏

𝑗
+ 𝛿] and

𝜆 (𝜏
𝑗
) = 𝜔

0
𝑖,

𝑑Re 𝜆 (𝜏)
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏
𝑗

> 0. (39)

Let

Ω
𝜖,2𝜋/𝜔

0

= {(𝜂, 𝑝) ; 0 < 𝜂 < 𝜖,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝 −
2𝜋

𝜔
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜖} . (40)

It is easy to verify that on [𝜏
𝑗
− 𝛿, 𝜏

𝑗
+ 𝛿] × 𝜕Ω

𝜖,2𝜋/𝜔
0

,

det(Δ (𝐸∗
, 𝜏, 𝑝) (𝜂 +

2𝜋

𝑝
𝑖)) = 0

iff 𝜂 = 0, 𝜏 = 𝜏
𝑗
, 𝑝 =

2𝜋

𝜔
0

.

(41)
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Figure 1: The trajectories of 𝐼(𝑡) with 𝜏 = 5, 15, 25, 35, 45, 55,
respectively. 𝐸

0
is always stable.

Therefore, the hypotheses (𝐴
1
)–(𝐴

4
) in [27] are satisfied.

Moreover, if we define

𝐻
±
(𝐸

∗
, 𝜏

𝑗
,
2𝜋

𝜔
0

) (𝜂, 𝑝)

= det(Δ (𝐸∗
, 𝜏

𝑗
± 𝛿, 𝑝) (𝜂 +

2𝜋

𝑝
𝑖)) ,

(42)

then we have the crossing number of isolated center
(𝐸

∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
) as follows:

𝛾(𝐸
∗
, 𝜏

𝑗
,
2𝜋

𝜔
0

)

= deg
𝐵
(𝐻

−
(𝐸

∗
, 𝜏

𝑗
,
2𝜋

𝜔
0

) ,Ω
𝜖,2𝜋/𝜔

0

)

− deg
𝐵
(𝐻

+
(𝐸

∗
, 𝜏

𝑗
,
2𝜋

𝜔
0

) ,Ω
𝜖,2𝜋/𝜔

0

) = −1.

(43)

Thus, we have

∑

(𝑧,𝜏,𝑝)∈C
(𝐸
∗
,𝜏𝑗,2𝜋/𝜔0)

𝛾 (𝑧, 𝜏, 𝑝) < 0, (44)

where (𝑧, 𝜏, 𝑝) has all or parts of the form (𝐸
∗
, 𝜏

𝑘
, 2𝜋/𝜔

0
) (𝑘 =

0, 1, . . .).
It follows from Lemma 11 that the connected component

ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
through (𝐸∗

, 𝜏
𝑗
, 2𝜋/𝜔

0
) in Γ is unbounded. From

(28), we can know that if 𝑅
0
> 1 holds, for 𝑗 ≥ 1,

𝜏
𝑗
=

1

𝜔
0

{cos−1 (
𝑏
4
𝜔

2
− 𝑏

2
𝑏
4
− 𝑏

1
𝑏
3
𝜔

2

𝑏
2

4
+ 𝑏

2

3
𝜔2

) + 2𝑗𝜋} >
2𝜋

𝜔
0

.

(45)
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Figure 2: The trajectories and phase graphs of system (5) with 𝜏 = 19. 𝐸∗ is stable.

Now we prove that the projection of ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
onto

𝜏-space is [𝜏, +∞), where 𝜏 ≤ 𝜏
𝑗
. Clearly, it follows from

the proof of Lemma 14 that system (5) with 𝜏 = 0 has
no nontrivial periodic solution. Hence, the projection of
ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
onto 𝜏-space is away from zero.

For a contradiction, we suppose that the projection of
ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
onto 𝜏-space is bounded; this means that the

projection of ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
onto 𝜏-space is included in an

interval (0, 𝜏∗). Noticing 2𝜋/𝜔
0
< 𝜏

𝑗
and applying Lemma 14,

we have 0 < 𝑝 < 𝜏
∗ for (𝑧(𝑡), 𝜏, 𝑝) belonging to

ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
. Applying Lemma 12, we know that the projection

of ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
onto 𝑧-space is bounded. So the component

of ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
is bounded. It contradicts our conclusion that

ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
is unbounded.The contradiction implies that the

projection of ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
onto 𝜏-space is unbounded above.

Hence, system (5) has at least 𝑗 − 1 periodic solution for
every 𝜏 > 𝜏

𝑗
, (𝑗 = 1, 2, . . .). This completes the proof.

5. Numerical Simulation

Example 1. In this case, we set 𝑏 = 10, 𝑑 = 0.02, 𝛽
1
= 0.0002,

𝛽
2
= 0.00018, 𝑚 = 30, 𝛿 = 0.1, 𝜇 = 0.05, and 𝛾 = 0.01.

From (12), we compute 𝑅
0
= 0.5882 < 1. Furthermore,

from (13), system (5) has only a disease-free equilibrium 𝐸
0
=

(500, 0, 0). From Theorem 4, we know that the disease-free
equilibrium 𝐸

0
is locally asymptotically stable for any time

delay 𝜏 ⩾ 0.
Figure 1 shows that𝐸

0
is locally asymptotically stable, and

the trajectories of 𝐼(𝑡) always converge to zero for 𝜏 taking
some different values.

Example 2. In this case, we set 𝑏 = 10, 𝑑 = 0.02, 𝛽
1
= 0.002,

𝛽
2
= 0.0018, 𝑚 = 30, 𝛿 = 0.1, 𝜇 = 0.05, and 𝛾 = 0.01.

From (12), we compute 𝑅
0
= 5.8824 > 1. Furthermore, from

(13), we get a disease-free equilibrium 𝐸
0
= (500, 0, 0) and

an endemic equilibrium 𝐸
∗
= (178.7543, 41.9016, 69.8360)

of system (5). From the algorithm of Section 3.3, we can
compute 𝜏

0
≈ 20.4343 and ℎ󸀠(𝑧

𝑘
) = 13.2438 > 0. Thus, from

Theorems 4 and 10, we know that the disease-free equilibrium
𝐸

0
is unstable for all 𝜏 ⩾ 0 and that the endemic equilibrium

𝐸
∗ is stable for 𝜏 ∈ [0, 20.4343). When 𝜏 crosses 𝜏

0
, a family

of periodic orbits bifurcate from 𝐸
∗.

Figure 2 shows that the endemic equilibrium 𝐸
∗ is stable

with 𝜏 = 19. Figure 3 shows that the endemic equilibrium
𝐸

∗ is unstable and a periodic orbit bifurcate from 𝐸
∗ with

𝜏 = 20.5. Figure 4 shows that the endemic equilibrium 𝐸
∗

is still unstable and a periodic orbit bifurcate from 𝐸
∗ with

𝜏 = 30. We can see from Figures 3 and 4 that the period and
amplitude of the oscillation are increasing with the increasing
of time delay. Furthermore, Figure 5 shows that the local
Hopf bifurcation implies the global Hopf bifurcation after the
second critical value of 𝜏

1
≈ 146.4764.

6. Discussion

In this paper, we proposed an SIRS epidemic model incorpo-
rating media coverage with time delay. We first investigated
the positivity and boundedness of the solution of system
(5) and show that the solution of system (5) with the initial
condition (6) is positive and bounded.

Secondly, we studied the stability of the disease-free equi-
librium. Our results show that the disease-free equilibrium
is globally stable for all 𝜏 ⩾ 0 when the basic reproduction
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Figure 3: The trajectories and phase graphs of system (5) with 𝜏 = 20.5, 𝐸∗ is unstable and a periodic orbit bifurcate from 𝐸
∗.
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Figure 4: The trajectories and phase graphs of system (5) with 𝜏 = 30. 𝐸∗ is unstable and a periodic orbit bifurcate from 𝐸
∗.

number 𝑅
0
< 1. This is to say, the time delay in media

coverage cannot influence the stability of the disease-free
equilibrium. In other words, we can ignore the effect of time
delay for 𝑅

0
< 1.

However, when 𝑅
0
> 1, the stability of the endemic equi-

librium will be affected by the time delay in media coverage.
We found that there existed a critical value of time delay 𝜏,
such that the stability of the endemic equilibrium changed

and periodic oscillations occurredwhen the time delay passes
through this critical value. Furthermore, we show that the
local Hopf bifurcation implies the global Hopf bifurcation
after the second critical value of delay.

These resultsmean that, when𝑅
0
> 1 and the time delay is

small enough, the epidemic will eventually become endemic
disease. However, if the delay of information about and
appraisal of an epidemic on media coverage is too large,
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Figure 5: The trajectories and phase graphs of system (5) with 𝜏 = 160. 𝐸∗ is unstable and a periodic orbit bifurcate from 𝐸
∗.

it will lead to repeated episodes of epidemic, and then
it is unfavourable for the containment of the epidemic.
We suggest that it is helpful for controlling epidemic to
communicate about the outbreak of an epidemic as soon as
possible.
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